
http://www.tutorialspoint.com/servlets/servlets-overview.htm Copyright © tutorialspoint.com

SERVLETS OVERVIEW

What are Servlets?
Java Servlets are programs that run on a Web or Applicat ion server and act as a middle layer
between a request coming from a Web browser or other HTTP client and databases or
applicat ions on the HTTP server.

Using Servlets, you can collect input from users through web page forms, present records from a
database or another source, and create web pages dynamically.

Java Servlets often serve the same purpose as programs implemented using the Common
Gateway Interface (CGI). But Servlets offer several advantages in comparison with the CGI.

Performance is significantly better.

Servlets execute within the address space of a Web server. It  is not necessary to create a
separate process to handle each client request.

Servlets are platform-independent because they are written in Java.

Java security manager on the server enforces a set of restrict ions to protect the resources
on a server machine. So servlets are trusted.

The full functionality of the Java class libraries is available to a servlet. It  can communicate
with applets, databases, or other software via the sockets and RMI mechanisms that you
have seen already.

Servlets Architecture:
Following diagram shows the posit ion of Servelts in a Web Applicat ion.

Servlets Tasks:
Servlets perform the following major tasks:

Read the explicit  data sent by the clients (browsers). This includes an HTML form on a Web
page or it  could also come from an applet or a custom HTTP client program.

Read the implicit  HTTP request data sent by the clients (browsers). This includes cookies,
media types and compression schemes the browser understands, and so forth.

Process the data and generate the results. This process may require talking to a database,
executing an RMI or CORBA call, invoking a Web service, or computing the response direct ly.

Send the explicit  data (i.e., the document) to the clients (browsers). This document can be
sent in a variety of formats, including text (HTML or XML), binary (GIF images), Excel, etc.

           Patel Gunjan

Gunjan
Sticky Note
Meaning --> The range of Addresses which can access the processor or a program.. 

Gunjan
Highlight

Gunjan
Sticky Note
Meaning --> Clearly Or Openly

Gunjan
Highlight

Gunjan
Highlight

Gunjan
Sticky Note
meaning --> Indirect way



Send the implicit  HTTP response to the clients (browsers). This includes telling the browsers
or other clients what type of document is being returned (e.g., HTML), sett ing cookies and
caching parameters, and other such tasks.

Servlets Packages:
Java Servlets are Java classes run by a web server that has an interpreter that supports the Java
Servlet specificat ion.

Servlets can be created using the javax.servlet  and javax.servlet.http packages, which are a
standard part of the Java's enterprise edit ion, an expanded version of the Java class library that
supports large-scale development projects.

These classes implement the Java Servlet and JSP specificat ions. At the t ime of writ ing this
tutorial, the versions are Java Servlet 2.5 and JSP 2.1.

Java servlets have been created and compiled just like any other Java class. After you install the
servlet packages and add them to your computer's Classpath, you can compile servlets with the
JDK's Java compiler or any other current compiler.

What is Next?
I would take you step by step to set up your environment to start with Servlets. So fasten your
belt  for a nice drive with Servlets. I'm sure you are going to enjoy this tutorial very much.

Gunjan
Highlight

Gunjan
Highlight



http://www.tutorialspoint.com/servlets/servlets-life-cycle.htm Copyright © tutorialspoint.com

SERVLETS - LIFE CYCLE

A servlet life cycle can be defined as the entire process from its creation t ill the destruction. The
following are the paths followed by a servlet

The servlet is init ialized by calling the init () method.

The servlet calls service() method to process a client's request.

The servlet is terminated by calling the destroy() method.

Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in details.

The init() method :
The init  method is designed to be called only once. It  is called when the servlet is first  created,
and not called again for each user request. So, it  is used for one-t ime init ializat ions, just as with
the init  method of applets.

The servlet is normally created when a user first  invokes a URL corresponding to the servlet, but
you can also specify that the servlet be loaded when the server is first  started.

When a user invokes a servlet, a single instance of each servlet gets created, with each user
request result ing in a new thread that is handed off to doGet or doPost as appropriate. The init()
method simply creates or loads some data that will be used throughout the life of the servlet.

The init  method definit ion looks like this:

public void init() throws ServletException {
  // Initialization code...
}

The service() method :
The service() method is the main method to perform the actual task. The servlet container (i.e.
web server) calls the service() method to handle requests coming from the client( browsers) and
to write the formatted response back to the client.

Each t ime the server receives a request for a servlet, the server spawns a new thread and calls
service. The service() method checks the HTTP request type (GET, POST, PUT, DELETE, etc.) and
calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

Here is the signature of this method:

public void service(ServletRequest request, 
                    ServletResponse response) 
      throws ServletException, IOException{
}

The service () method is called by the container and service method invokes doGe, doPost, doPut,
doDelete, etc. methods as appropriate. So you have nothing to do with service() method but you
override either doGet() or doPost() depending on what type of request you receive from the
client.

The doGet() and doPost() are most frequently used methods with in each service request. Here
are the signature of these two methods.

The doGet() Method



A GET request results from a normal request for a URL or from an HTML form that has no METHOD
specified and it  should be handled by doGet() method.

public void doGet(HttpServletRequest request,
                  HttpServletResponse response)
    throws ServletException, IOException {
    // Servlet code
}

The doPost() Method
A POST request results from an HTML form that specifically lists POST as the METHOD and it
should be handled by doPost() method.

public void doPost(HttpServletRequest request,
                   HttpServletResponse response)
    throws ServletException, IOException {
    // Servlet code
}

The destroy() method :
The destroy() method is called only once at the end of the life cycle of a servlet. This method
gives your servlet a chance to close database connections, halt  background threads, write cookie
lists or hit  counts to disk, and perform other such cleanup activit ies.

After the destroy() method is called, the servlet object is marked for garbage collect ion. The
destroy method definit ion looks like this:

  public void destroy() {
    // Finalization code...
  }

Architecture Digram:
The following figure depicts a typical servlet life-cycle scenario.

First  the HTTP requests coming to the server are delegated to the servlet container.

The servlet container loads the servlet before invoking the service() method.

Then the servlet container handles mult iple requests by spawning mult iple threads, each
thread executing the service() method of a single instance of the servlet.





http://www.tutorialspoint.com/jsp/jsp_overview.htm Copyright © tutorialspoint.com

JSP - OVERVIEW

What is JavaServer Pages?

JavaServer Pages (JSP) is a technology for developing web pages that support dynamic content which helps developers
insert java code in HTML pages by making use of special JSP tags, most of which start with <% and end with %>.

A JavaServer Pages component is a type of Java servlet that is designed to fulfill the role of a user interface for a Java
web application. Web developers write JSPs as text files that combine HTML or XHTML code, XML elements, and
embedded JSP actions and commands.

Using JSP, you can collect input from users through web page forms, present records from a database or another source,
and create web pages dynamically.

JSP tags can be used for a variety of purposes, such as retrieving information from a database or registering user
preferences, accessing JavaBeans components, passing control between pages and sharing information between requests,
pages etc.

Why Use JSP?

JavaServer Pages often serve the same purpose as programs implemented using the Common Gateway Interface (CGI).
But JSP offer several advantages in comparison with the CGI.

Performance is significantly better because JSP allows embedding Dynamic Elements in HTML Pages itself
instead of having a separate CGI files.

JSP are always compiled before it's processed by the server unlike CGI/Perl which requires the server to load an
interpreter and the target script each time the page is requested.

JavaServer Pages are built on top of the Java Servlets API, so like Servlets, JSP also has access to all the
powerful Enterprise Java APIs, including JDBC, JNDI, EJB, JAXP etc.

JSP pages can be used in combination with servlets that handle the business logic, the model supported by Java
servlet template engines.

Finally, JSP is an integral part of J2EE, a complete platform for enterprise class applications. This means that JSP can
play a part in the simplest applications to the most complex and demanding.

Advantages of JSP:

Following is the list of other advantages of using JSP over other technologies:

vs. Active Server Pages (ASP):  The advantages of JSP are twofold. First, the dynamic part is written in Java,
not Visual Basic or other MS specific language, so it is more powerful and easier to use. Second, it is portable to
other operating systems and non-Microsoft Web servers.

vs. Pure Servlets: It is more convenient to write (and to modify!) regular HTML than to have plenty of println
statements that generate the HTML.

vs. Server-Side Includes (SSI):  SSI is really only intended for simple inclusions, not for "real" programs that
use form data, make database connections, and the like.

vs. JavaScript: JavaScript can generate HTML dynamically on the client but can hardly interact with the web



server to perform complex tasks like database access and image processing etc.

vs. Static HTML:  Regular HTML, of course, cannot contain dynamic information.

What is Next?

I would take you step by step to set up your environment to start with JSP. I'm assuming you have good hands on with
Java Programming to proceed with learning JSP.

If you are not aware of Java Programming Language then I would recommend to go through Java Tutorial to
understand Java Programming.



http://www.tutorialspoint.com/jsp/jsp_architecture.htm Copyright © tutorialspoint.com

JSP - ARCHITECTURE

The web server needs a JSP engine ie. container to process JSP pages. The JSP container is responsible for intercepting
requests for JSP pages. This tutorial makes use of Apache which has built-in JSP container to support JSP pages
development.

A JSP container works with the Web server to provide the runtime environment and other services a JSP needs. It
knows how to understand the special elements that are part of JSPs.

Following diagram shows the position of JSP container and JSP files in a Web Application.

JSP Processing:

The following steps explain how the web server creates the web page using JSP:

As with a normal page, your browser sends an HTTP request to the web server.

The web server recognizes that the HTTP request is for a JSP page and forwards it to a JSP engine. This is done
by using the URL or JSP page which ends with .jsp instead of .html.

The JSP engine loads the JSP page from disk and converts it into a servlet content. This conversion is very
simple in which all template text is converted to println( ) statements and all JSP elements are converted to Java
code that implements the corresponding dynamic behavior of the page.

The JSP engine compiles the servlet into an executable class and forwards the original request to a servlet engine.

A part of the web server called the servlet engine loads the Servlet class and executes it. During execution, the
servlet produces an output in HTML format, which the servlet engine passes to the web server inside an HTTP
response.

The web server forwards the HTTP response to your browser in terms of static HTML content.

Finally web browser handles the dynamically generated HTML page inside the HTTP response exactly as if it
were a static page.

All the above mentioned steps can be shown below in the following diagram:



Typically, the JSP engine checks to see whether a servlet for a JSP file already exists and whether the modification date
on the JSP is older than the servlet. If the JSP is older than its generated servlet, the JSP container assumes that the JSP
hasn't changed and that the generated servlet still matches the JSP's contents. This makes the process more efficient than
with other scripting languages (such as PHP) and therefore faster.

So in a way, a JSP page is really just another way to write a servlet without having to be a Java programming wiz.
Except for the translation phase, a JSP page is handled exactly like a regular servlet



http://www.tutorialspoint.com/jsp/jsp_life_cycle.htm Copyright © tutorialspoint.com

JSP - LIFE CYCLE

The key to understanding the low-level functionality of JSP is to understand the simple life cycle they follow.

A JSP life cycle can be defined as the entire process from its creation till the destruction which is similar to a servlet life
cycle with an additional step which is required to compile a JSP into servlet.

The following are the paths followed by a JSP

Compilation

Initialization

Execution

Cleanup

The four major phases of JSP life cycle are very similar to Servlet Life Cycle and they are as follows:

JSP Compilation:

When a browser asks for a JSP, the JSP engine first checks to see whether it needs to compile the page. If the page has
never been compiled, or if the JSP has been modified since it was last compiled, the JSP engine compiles the page.

The compilation process involves three steps:

Parsing the JSP.

Turning the JSP into a servlet.

Compiling the servlet.

JSP Initialization:



When a container loads a JSP it invokes the jspInit() method before servicing any requests. If you need to perform JSP-
specific initialization, override the jspInit() method:

public void jspInit(){
  // Initialization code...
}

Typically initialization is performed only once and as with the servlet init method, you generally initialize database
connections, open files, and create lookup tables in the jspInit method.

JSP Execution:

This phase of the JSP life cycle represents all interactions with requests until the JSP is destroyed.

Whenever a browser requests a JSP and the page has been loaded and initialized, the JSP engine invokes the
_jspService() method in the JSP.

The _jspService() method takes an HttpServletRequest and an HttpServletResponse as its parameters as follows:

void _jspService(HttpServletRequest request, 
                 HttpServletResponse response)
{
   // Service handling code...
}

The _jspService() method of a JSP is invoked once per a request and is responsible for generating the response for that
request and this method is also responsible for generating responses to all seven of the HTTP methods ie. GET, POST,
DELETE etc.

JSP Cleanup:

The destruction phase of the JSP life cycle represents when a JSP is being removed from use by a container.

The jspDestroy() method is the JSP equivalent of the destroy method for servlets. Override jspDestroy when you need
to perform any cleanup, such as releasing database connections or closing open files.

The jspDestroy() method has the following form:

public void jspDestroy()
{
   // Your cleanup code goes here.
}



http://www.tutorialspoint.com/jsp/jsp_syntax.htm Copyright © tutorialspoint.com

JSP - SYNTAX

This tutorial will give basic idea on simple syntax (ie. elements) involved with JSP development:

The Scriptlet:

A scriptlet can contain any number of JAVA language statements, variable or method declarations, or expressions that
are valid in the page scripting language.

Following is the syntax of Scriptlet:

<% code fragment %>

You can write XML equivalent of the above syntax as follows:

<jsp:scriptlet>
   code fragment
</jsp:scriptlet>

Any text, HTML tags, or JSP elements you write must be outside the scriptlet. Following is the simple and first example
for JSP:

<html>
<head><title>Hello World</title></head>
<body>
Hello World!<br/>
<%
out.println("Your IP address is " + request.getRemoteAddr());
%>
</body>
</html>

NOTE: Assuming that Apache Tomcat is installed in C:\apache-tomcat-7.0.2 and your environment is setup as per
environment setup tutorial.

Let us keep above code in JSP file hello.jsp and put this file in C:\apache-tomcat-7.0.2\webapps\ROOT directory and
try to browse it by giving URL http://localhost:8080/hello.jsp. This would generate following result:

JSP Declarations:

A declaration declares one or more variables or methods that you can use in Java code later in the JSP file. You must
declare the variable or method before you use it in the JSP file.

Following is the syntax of JSP Declarations:



<%! declaration; [ declaration; ]+ ... %>

You can write XML equivalent of the above syntax as follows:

<jsp:declaration>
   code fragment
</jsp:declaration>

Following is the simple example for JSP Comments:

<%! int i = 0; %> 
<%! int a, b, c; %> 
<%! Circle a = new Circle(2.0); %> 

JSP Expression:

A JSP expression element contains a scripting language expression that is evaluated, converted to a String, and inserted
where the expression appears in the JSP file.

Because the value of an expression is converted to a String, you can use an expression within a line of text, whether or
not it is tagged with HTML, in a JSP file.

The expression element can contain any expression that is valid according to the Java Language Specification but you
cannot use a semicolon to end an expression.

Following is the syntax of JSP Expression:

<%= expression %>

You can write XML equivalent of the above syntax as follows:

<jsp:expression>
   expression
</jsp:expression>

Following is the simple example for JSP Expression:

<html> 
<head><title>A Comment Test</title></head> 
<body>
<p>
   Today's date: <%= (new java.util.Date()).toLocaleString()%>
</p>
</body> 
</html> 

This would generate following result:

Today's date: 11-Sep-2010 21:24:25

JSP Comments:

JSP comment marks text or statements that the JSP container should ignore. A JSP comment is useful when you want to
hide or "comment out" part of your JSP page.



Following is the syntax of JSP comments:

<%-- This is JSP comment --%>

Following is the simple example for JSP Comments:

<html> 
<head><title>A Comment Test</title></head> 
<body> 
<h2>A Test of Comments</h2> 
<%-- This comment will not be visible in the page source --%> 
</body> 
</html> 

This would generate following result:

A Test of Comments

There are a small number of special constructs you can use in various cases to insert comments or characters that would
otherwise be treated specially. Here's a summary:

Syntax Purpose

<%-- comment --%> A JSP comment. Ignored by the JSP engine.

<!-- comment --> An HTML comment. Ignored by the browser.

<\% Represents static <% literal.

%\> Represents static %> literal.

\' A single quote in an attribute that uses single quotes.

\" A double quote in an attribute that uses double quotes.

JSP Directives:

A JSP directive affects the overall structure of the servlet class. It usually has the following form:

<%@ directive attribute="value" %>

There are three types of directive tag:

Directive Description

<%@ page ... %> Defines page-dependent attributes, such as scripting language, error page, and
buffering requirements.

<%@ include ... %> Includes a file during the translation phase.

<%@ taglib ... %> Declares a tag library, containing custom actions, used in the page



We would explain JSP directive in separate chapter JSP - Directives

JSP Actions:

JSP actions use constructs in XML syntax to control the behavior of the servlet engine. You can dynamically insert a
file, reuse JavaBeans components, forward the user to another page, or generate HTML for the Java plugin.

There is only one syntax for the Action element, as it conforms to the XML standard:

<jsp:action_name attribute="value" />

Action elements are basically predefined functions and there are following JSP actions available:

Syntax Purpose

jsp:include Includes a file at the time the page is requested

jsp:include Includes a file at the time the page is requested

jsp:useBean Finds or instantiates a JavaBean

jsp:setProperty Sets the property of a JavaBean

jsp:getProperty Inserts the property of a JavaBean into the output

jsp:forward Forwards the requester to a new page

jsp:plugin Generates browser-specific code that makes an OBJECT or EMBED tag for the
Java plugin

jsp:element Defines XML elements dynamically.

jsp:attribute Defines dynamically defined XML element's attribute.

jsp:body Defines dynamically defined XML element's body.

jsp:text Use to write template text in JSP pages and documents.

We would explain JSP actions in separate chapter JSP - Actions

JSP Implicit Objects:

JSP supports nine automatically defined variables, which are also called implicit objects. These variables are:

Objects Description

request This is the HttpServletRequest object associated with the request.

response This is the HttpServletResponse object associated with the response to the
client.

out This is the PrintWriter object used to send output to the client.



session This is the HttpSession object associated with the request.

application This is the ServletContext object associated with application context.

config This is the ServletConfig object associated with the page.

pageContext This encapsulates use of server-specific features like higher performance
JspWriters.

page This is simply a synonym for this, and is used to call the methods defined by the
translated servlet class.

Exception The Exception object allows the exception data to be accessed by designated
JSP.

We would explain JSP Implicit Objects in separate chapter JSP - Implicit Objects.

Control-Flow Statements:

JSP provides full power of Java to be embeded in your web application. You can use all the APIs and building blocks of
Java in your JSP programming including decision making statements, loops etc.

Decision-Making Statements:

The if...else block starts out like an ordinary Scriptlet, but the Scriptlet is closed at each line with HTML text included
between Scriptlet tags.

<%! int day = 3; %> 
<html> 
<head><title>IF...ELSE Example</title></head> 
<body>
<% if (day == 1 | day == 7) { %>
      <p> Today is weekend</p>
<% } else { %>
      <p> Today is not weekend</p>
<% } %>
</body> 
</html> 

This would produce following result:

Today is not weekend

Now look at the following switch...case block which has been written a bit differentlty using out.println() and inside
Scriptletas:

<%! int day = 3; %> 
<html> 
<head><title>SWITCH...CASE Example</title></head> 
<body>
<% 
switch(day) {
case 0:
   out.println("It\'s Sunday.");
   break;



case 1:
   out.println("It\'s Monday.");
   break;
case 2:
   out.println("It\'s Tuesday.");
   break;
case 3:
   out.println("It\'s Wednesday.");
   break;
case 4:
   out.println("It\'s Thursday.");
   break;
case 5:
   out.println("It\'s Friday.");
   break;
default:
   out.println("It's Saturday.");
}
%>
</body> 
</html> 

This would produce following result:

It's Wednesday.

Loop Statements:

You can also use three basic types of looping blocks in Java: for, while,and do…while blocks in your JSP
programming.

Let us look at the following for loop example:

<%! int fontSize; %> 
<html> 
<head><title>FOR LOOP Example</title></head> 
<body>
<%for ( fontSize = 1; fontSize <= 3; fontSize++){ %>
   <font color="green" size="<%= fontSize %>">
    JSP Tutorial
   </font><br />
<%}%>
</body> 
</html> 

This would produce following result:

JSP Tutorial 

JSP Tutorial 
JSP Tutorial 

Above example can be written using while loop as follows:

<%! int fontSize; %> 
<html> 
<head><title>WHILE LOOP Example</title></head> 
<body>
<%while ( fontSize <= 3){ %>



   <font color="green" size="<%= fontSize %>">
    JSP Tutorial
   </font><br />
<%fontSize++;%>
<%}%>
</body> 
</html> 

This would also produce following result:

JSP Tutorial 

JSP Tutorial 
JSP Tutorial 

JSP Operators:

JSP supports all the logical and arithmatic operators supported by Java. Following table give a list of all the operators
with the highest precedence appear at the top of the table, those with the lowest appear at the bottom.

Within an expression, higher precedenace operators will be evaluated first.

Category Operator Associativity 

Postfix () [] . (dot operator) Left to right 

Unary ++ - - ! ~ Right to left 

Multiplicative  * / % Left to right 

Additive  + - Left to right 

Shift  >> >>> <<  Left to right 

Relational  > >= < <=  Left to right 

Equality  == != Left to right 

Bitwise AND & Left to right 

Bitwise XOR ^ Left to right 

Bitwise OR | Left to right 

Logical AND && Left to right 

Logical OR || Left to right 

Conditional ?: Right to left 

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left 

Comma , Left to right 

JSP Literals:



The JSP expression language defines the following literals:

Boolean: true and false

Integer: as in Java

Floating point: as in Java

String: with single and double quotes; " is escaped as \", ' is escaped as \', and \ is escaped as \\.

Null: null



http://www.tutorialspoint.com/jsp/jsp_form_processing.htm Copyright © tutorialspoint.com

JSP - FORM PROCESSING

You must have come across many situations when you need to pass some information from your browser to web server
and ultimately to your backend program. The browser uses two methods to pass this information to web server. These
methods are GET Method and POST Method.

GET method:

The GET method sends the encoded user information appended to the page request. The page and the encoded
information are separated by the ? character as follows:

http://www.test.com/hello?key1=value1&key2=value2

The GET method is the defualt method to pass information from browser to web server and it produces a long string
that appears in your browser's Location:box. Never use the GET method if you have password or other sensitive
information to pass to the server.

The GET method has size limtation: only 1024 characters can be in a request string.

This information is passed using QUERY_STRING header and will be accessible through QUERY_STRING
environment variable which can be handled using getQueryString() and getParameter() methods of request object.

POST method:

A generally more reliable method of passing information to a backend program is the POST method.

This method packages the information in exactly the same way as GET methods, but instead of sending it as a text
string after a ? in the URL it sends it as a separate message. This message comes to the backend program in the form of
the standard input which you can parse and use for your processing.

JSP handles this type of requests using getParameter() method to read simple parameters and getInputStream() method
to read binary data stream coming from the client.

Reading Form Data using JSP

JSP handles form data parsing automatically using the following methods depending on the situation:

getParameter(): You call request.getParameter() method to get the value of a form parameter.

getParameterValues(): Call this method if the parameter appears more than once and returns multiple values,
for example checkbox.

getParameterNames(): Call this method if you want a complete list of all parameters in the current request.

getInputStream(): Call this method to read binary data stream coming from the client.

GET Method Example Using URL:

Here is a simple URL which will pass two values to HelloForm program using GET method.

http://localhost:8080/main.jsp?first_name=ZARA&last_name=ALI

Below is main.jsp JSP program to handle input given by web browser. We are going to use getParameter() method



which makes it very easy to access passed information:

<html>
<head>
<title>Using GET Method to Read Form Data</title>
</head>
<body>
<center>
<h1>Using GET Method to Read Form Data</h1>
<ul>
<li><p><b>First Name:</b>
   <%= request.getParameter("first_name")%>
</p></li>
<li><p><b>Last  Name:</b>
   <%= request.getParameter("last_name")%>
</p></li>
</ul>
</body>
</html>

Now type http://localhost:8080/main.jsp?first_name=ZARA&last_name=ALI  in your browser's Location:box. This
would generate following result:

USING GET METHOD TO READ FORM DATA

First Name: ZARA

Last Name: ALI

GET Method Example Using Form:

Here is a simple example which passes two values using HTML FORM and submit button. We are going to use same
JSP main.jsp to handle this imput.

<html>
<body>
<form action="main.jsp" method="GET">
First Name: <input type="text" name="first_name">
<br />
Last Name: <input type="text" name="last_name" />
<input type="submit" value="Submit" />
</form>
</body>
</html>

Keep this HTML in a file Hello.htm and put it in <Tomcat-installation-directory>/webapps/ROOT directory. When you
would access http://localhost:8080/Hello.htm, here is the actual output of the above form.

First Name:  

Last Name:  

Try to enter First Name and Last Name and then click submit button to see the result on your local machine where
tomcat is running. Based on the input provided, it will generate similar result as mentioned in the above example.

POST Method Example Using Form:



Let us do little modification in the above JSP to handle GET as well as POST methods. Below is main.jsp JSP program
to handle input given by web browser using GET or POST methods.

Infact there is no change in above JSP because only way of passing parameters is changed and no binary data is being
passed to the JSP program. File handling related concepts would be explained in separate chapter where we need to read
binary data stream.

<html>
<head>
<title>Using GET and POST Method to Read Form Data</title>
</head>
<body>
<center>
<h1>Using GET Method to Read Form Data</h1>
<ul>
<li><p><b>First Name:</b>
   <%= request.getParameter("first_name")%>
</p></li>
<li><p><b>Last  Name:</b>
   <%= request.getParameter("last_name")%>
</p></li>
</ul>
</body>
</html>

Following is the content of Hello.htm file:

<html>
<body>
<form action="main.jsp" method="POST">
First Name: <input type="text" name="first_name">
<br />
Last Name: <input type="text" name="last_name" />
<input type="submit" value="Submit" />
</form>
</body>
</html>

Now let us keep main.jsp and hello.htm in <Tomcat-installation-directory>/webapps/ROOT directory. When you would
access http://localhost:8080/Hello.htm, below is the actual output of the above form.

First Name:  

Last Name:  

Try to enter First and Last Name and then click submit button to see the result on your local machine where tomcat is
running.

Based on the input provided, it would generate similar result as mentioned in the above examples.

Passing Checkbox Data to JSP Program

Checkboxes are used when more than one option is required to be selected.

Here is example HTML code, CheckBox.htm, for a form with two checkboxes

<html>
<body>
<form action="main.jsp" method="POST" target="_blank">
<input type="checkbox" name="maths" checked="checked" /> Maths
<input type="checkbox" name="physics"  /> Physics
<input type="checkbox" name="chemistry" checked="checked" /> 
                                                Chemistry



<input type="submit" value="Select Subject" />
</form>
</body>
</html>

The result of this code is the following form

 Maths  Physics  Chemistry 

Below is main.jsp JSP program to handle input given by web browser for checkbox button.

<html>
<head>
<title>Reading Checkbox Data</title>
</head>
<body>
<center>
<h1>Reading Checkbox Data</h1>
<ul>
<li><p><b>Maths Flag:</b>
   <%= request.getParameter("maths")%>
</p></li>
<li><p><b>Physics Flag:</b>
   <%= request.getParameter("physics")%>
</p></li>
<li><p><b>Chemistry Flag:</b>
   <%= request.getParameter("chemistry")%>
</p></li>
</ul>
</body>
</html>

For the above example, it would display following result:

READING CHECKBOX DATA

Maths Flag : : on

Physics Flag: : null

Chemistry Flag: : on

Reading All Form Parameters:

Following is the generic example which uses getParameterNames() method of HttpServletRequest to read all the
available form parameters. This method returns an Enumeration that contains the parameter names in an unspecified
order.

Once we have an Enumeration, we can loop down the Enumeration in the standard manner, using hasMoreElements()
method to determine when to stop and using nextElement() method to get each parameter name.

<%@ page import="java.io.*,java.util.*" %>
<html>
<head>
<title>HTTP Header Request Example</title>
</head>
<body>
<center>
<h2>HTTP Header Request Example</h2>



<table width="100%" border="1" align="center">
<tr bgcolor="#949494">
<th>Param Name</th><th>Param Value(s)</th>
</tr>
<%
   Enumeration paramNames = request.getParameterNames();

   while(paramNames.hasMoreElements()) {
      String paramName = (String)paramNames.nextElement();
      out.print("<tr><td>" + paramName + "</td>\n");
      String paramValue = request.getHeader(paramName);
      out.println("<td> " + paramValue + "</td></tr>\n");
   }
%>
</table>
</center>
</body>
</html>

Following is the content of Hello.htm:

<html>
<body>
<form action="main.jsp" method="POST" target="_blank">
<input type="checkbox" name="maths" checked="checked" /> Maths
<input type="checkbox" name="physics"  /> Physics
<input type="checkbox" name="chemistry" checked="checked" /> Chem
<input type="submit" value="Select Subject" />
</form>
</body>
</html>

Now try calling JSP using above Hello.htm, this would generate a result something like as below based on the provided
input:

READING ALL FORM PARAMETERS

Param Name Param Value(s)

maths on

chemistry on

You can try above JSP to read any other form's data which is having other objects like text box, radio button or drop
down box etc.



http://www.tutorialspoint.com/jsp/jsp_implicit_objects.htm Copyright © tutorialspoint.com

JSP - IMPLICIT OBJECTS

JSP Implicit Objects are the Java objects that the JSP Container makes available to developers in each page and
developer can call them directly without being explicitly declared. JSP Implicit Objects are also called pre-defined
variables.

JSP supports nine Implicit Objects which are listed below:

Object Description

request This is the HttpServletRequest object associated with the request.

response This is the HttpServletResponse object associated with the response to the
client.

out This is the PrintWriter object used to send output to the client.

session This is the HttpSession object associated with the request.

application This is the ServletContext object associated with application context.

config This is the ServletConfig object associated with the page.

pageContext This encapsulates use of server-specific features like higher performance
JspWriters.

page This is simply a synonym for this, and is used to call the methods defined by the
translated servlet class.

Exception The Exception object allows the exception data to be accessed by designated
JSP.

The request Object:

The request object is an instance of a javax.servlet.http.HttpServletRequest object. Each time a client requests a page the
JSP engine creates a new object to represent that request.

The request object provides methods to get HTTP header information including form data, cookies, HTTP methods etc.

We would see complete set of methods associated with request object in coming chapter: JSP - Client Request.

The response Object:

The response object is an instance of a javax.servlet.http.HttpServletResponse object. Just as the server creates the
request object, it also creates an object to represent the response to the client.

The response object also defines the interfaces that deal with creating new HTTP headers. Through this object the JSP
programmer can add new cookies or date stamps, HTTP status codes etc.

We would see complete set of methods associated with response object in coming chapter: JSP - Server Response.



The out Object:

The out implicit object is an instance of a javax.servlet.jsp.JspWriter object and is used to send content in a response.

The initial JspWriter object is instantiated differently depending on whether the page is buffered or not. Buffering can
be easily turned off by using the buffered='false' attribute of the page directive.

The JspWriter object contains most of the same methods as the java.io.PrintWriter class. However, JspWriter has some
additional methods designed to deal with buffering. Unlike the PrintWriter object, JspWriter throws IOExceptions.

Following are the important methods which we would use to write boolean char, int, double, object, String etc.

Method Description

out.print(dataType dt) Print a data type value

out.println(dataType dt) Print a data type value then terminate the line with new line
character.

out.flush() Flush the stream.

The session Object:

The session object is an instance of javax.servlet.http.HttpSession and behaves exactly the same way that session objects
behave under Java Servlets.

The session object is used to track client session between client requests. We would see complete usage of session object
in coming chapter: JSP - Session Tracking.

The application Object:

The application object is direct wrapper around the ServletContext object for the generated Servlet and in reality an
instance of a javax.servlet.ServletContext object.

This object is a representation of the JSP page through its entire lifecycle. This object is created when the JSP page is
initialized and will be removed when the JSP page is removed by the jspDestroy() method.

By adding an attribute to application, you can ensure that all JSP files that make up your web application have access to
it.

You can check a simple use of Application Object in chapter: JSP - Hits Counter

The config Object:

The config object is an instantiation of javax.servlet.ServletConfig and is a direct wrapper around the ServletConfig
object for the generated servlet.

This object allows the JSP programmer access to the Servlet or JSP engine initialization parameters such as the paths or
file locations etc.

The following config method is the only one you might ever use, and its usage is trivial:

 
config.getServletName();



This returns the servlet name, which is the string contained in the <servlet-name> element defined in the WEB-
INF\web.xml file

The pageContext Object:

The pageContext object is an instance of a javax.servlet.jsp.PageContext object. The pageContext object is used to
represent the entire JSP page.

This object is intended as a means to access information about the page while avoiding most of the implementation
details.

This object stores references to the request and response objects for each request. The application, config, session, and
out objects are derived by accessing attributes of this object.

The pageContext object also contains information about the directives issued to the JSP page, including the buffering
information, the errorPageURL, and page scope.

The PageContext class defines several fields, including PAGE_SCOPE, REQUEST_SCOPE, SESSION_SCOPE, and
APPLICATION_SCOPE, which identify the four scopes. It also supports more than 40 methods, about half of which
are inherited from the javax.servlet.jsp. JspContext class.

One of the important methods is removeAttribute, which accepts either one or two arguments. For example,
pageContext.removeAttribute ("attrName") removes the attribute from all scopes, while the following code only
removes it from the page scope:

 
pageContext.removeAttribute("attrName", PAGE_SCOPE);

You can check a very good usage of pageContext in coming chapter: JSP - File Uploading.

The page Object:

This object is an actual reference to the instance of the page. It can be thought of as an object that represents the entire
JSP page.

The page object is really a direct synonym for the this object.

The exception Object:

The exception object is a wrapper containing the exception thrown from the previous page. It is typically used to
generate an appropriate response to the error condition.

We would see complete usage of this object in coming chapter: JSP - Exception Handling.


	SERVLETS OVERVIEW
	What are Servlets?
	Servlets Architecture:
	Servlets Tasks:
	Servlets Packages:
	What is Next?

	SERVLETS - LIFE CYCLE
	The init() method :
	The service() method :
	The doGet() Method
	The doPost() Method
	The destroy() method :
	Architecture Digram:




